
0764e4a0-0

0764e4a0-0 ii

COLLABORATORS

TITLE :

0764e4a0-0

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0764e4a0-0 iii

Contents

1 0764e4a0-0 1

1.1 FPL Compiler Environment Documentation . 1

1.2 Legal Status . 2

1.3 About this Manual . 2

1.4 What is Compiling . 2

1.5 Compiling Phases . 3

1.6 Compiled Format . 3

1.7 Requirements . 4

1.8 Installation . 4

1.9 Limitations . 4

1.10 File Naming Standards . 4

1.11 Things to Consider . 5

1.12 Using the Compiler . 5

1.13 Source / Compiling the Compiler . 6

1.14 Authors of All This . 6

1.15 Future of the FPL compiler . 7

0764e4a0-0 1 / 7

Chapter 1

0764e4a0-0

1.1 FPL Compiler Environment Documentation

FPL Compiler Environment Documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FPL is (C) by FrexxWare 1992-1996. All rights reserved.

This software has been written during a couple of hundred hours of our
spare time. To enable us to keep spending this amount of time and efforts
on products for your pleasure, please study the manual before asking
simple questions about trivial matters.

Legal Status

About this manual

What is FPL Compiling

Compiling Phases

Compiled Format

Requirements

Installation

Limitations

File Naming Standards

Things to Consider

Using the Compiler
Preprocessor Instructions

Source / Compiling the Compiler

Authors of All This



0764e4a0-0 2 / 7

Future

1.2 Legal Status

FPL - A shared library interpreting/compiled script langauge.
Copyright (C) 1992-1996 by FrexxWare. All rights reserved.
Authors: Daniel Stenberg and Kjell Ericson.

See separate section.
This program is free software; you may redistribute for non ←↩

commercial
purposes only. Commercial programs must have a written permission from the
author to use FPL. FPL is *NOT* public domain! Any provided source code is
only for reference and for assurance that users should be able to compile FPL
on any operating system he/she wants to use it in!

You may not change, resource, patch files or in any way reverse engineer
anything in the FPL package.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

1.3 About this Manual

Writing docs have always been one of the drawbacks with programming if you
ask me, and therefore I never take more time than necessary to write the
manuals for the projects I’m involved in. This is no exception.

I’ve written this manual with the help of Heddley (thanks lots for this
lovely piece of program, Edd!), lots of loud music and by thinking of the
users of all this that might not be able to use this if I don’t produce some
decriptive blurb about it.

If there is anything you miss, don’t understand or think is fuzzy described
somewhere in this manual, you’re probably right. Please mail me about any kind
of such occurance and I’ll improve.

And besides, you always have the source to refer to if you’re really eager to
know any details not revieled in this manual! =)

1.4 What is Compiling

Compiling in general means that the source text is interpreted and converted
into a format more easily understood and faster executed. Normally, compilers
compile ASCII text files into machine code binary programs, using CPU
instructions. The FPL Compiler is not like that, it compiles the standard
ASCII text file into a FPL improved instruction set format, that is more
easily understood and quicker read by the FPL interpreter engine.

Tests have proven that a general FPL program very similar or identical to the



0764e4a0-0 3 / 7

Demo.FPL file included in the FPL distribution package, executes up to four
times faster after it has been compiled (varying a little between computer
systems too).

FPL-intensive programs (in which most or a big part of the execution time is
occupied by the FPL engine) are of course the programs that’ll get the biggest
benefits from the compiling.

1.5 Compiling Phases

The compiling is done in several different phases. This is generally not
important to you as a user, with exception for the preprocessor phase.

The compiling always (if not disabled through a command line parameter)
starts with "preprocessing" the source file. Preprocessing means that all
#-instructions (like #define, #ifdef, #include, #else, etc) are resolved. See
the Preprocessor Instructions section for detailed information about those.

The next phase is the syntax-check-phase. The entire source file is now
scanned again and the syntax/usage is controlled and piped further into the
next phase. Any sever misuse of the language will be discovered in this phase
and reported to the terminal.

The actual compiling phase converts the previous source format into the new
one. This phase will also contain all sorts of optimizing in the future.

1.6 Compiled Format

Compiled files include information that might be of interest for you to know
about. It is among other things:

* Lowest FPL version required to run the program.

* Version number of the compiler that generated the program.

* File name of the original FPL program source.

* Little/bin endian information. The compiled program does only work on
machines with the same endian status that is stored in the compiled
file. If you don’t know what this means and don’t intend to move compiled
programs from one platform to another, just ignore this!

Optionally [debug] info:

* All external references gathered at one place. If this hunk is present,
all these names will be checked on load-time, to make sure that no
function in the file referes to a non-existing function/varible.

* Line number of the source file. To easier trace bugs back to the original
source file.

One of the main gains with this gathered information is that a compiled



0764e4a0-0 4 / 7

program can never get executed by a too old FPL version.

With this new, compiled custom format, we have introduced a free-form way to
improve things in FPL in the future. By allowing the compiled format to
change, we can improve compiling and add optimizing stages as long as we can
program them.

1.7 Requirements

It might require some time from you, humble user, but I’ve disregarded that
simple matter in the following section! ;)

The FPL Compiler Environment doesn’t require much. Hardly anything actually!
I just think it should be pointed out here that the FPL Compiler is of no use
whatsoever without you using one or more programs that run(s) FPL programs.
The ’FPLc’ executable program requires the ’cpp’ program to be put in the
system path before run, that’s all!

NOTE: the compiler is still designed to load the entire source file into
memory before compiling is done, why the memory amount in your system might
limit the size of FPL programs possible to compile!

1.8 Installation

Make sure the ’cpp’ executable is in the system path before FPLc is run, or
use the ’CPP’ command line option to specify the complete path to that or a
similar preprocessing program (any C-compiler’s preprocessor is likely to work
pretty smoothly together with FPLc).

1.9 Limitations

Some critical uses of FPL that is supported, but not supported in C, is no
longer suppored when FPLCompiling. The most obvious one is continuation of
string constants without the use of a backslash character (\), as in:

string WorkedBefore = "line one
-----> line two";

that will cause the preprocessor to go crazy, instead use:

string WorksNow = "line one\
-----> line two";

1.10 File Naming Standards



0764e4a0-0 5 / 7

With this compiler, we have decided to set a file naming standard. We have
decided that the default extensions used by any program that deals with FPL
programs should be

.FPL - for uncompiled, interpreted regular ASCII text FPL sources

.FPC - for compiled, custom format FPL programs

Any other can in most cases very well be used, but these mentioned are the
ones we recommend and those *we* will use for most of our work. The FPL
interpreter will also feature mechanisms in which the .FPL/.FPC extentions
will be required to enable them. That is i.e for the moment an automatic
run-the-compiled-version-of-a-FPL-program-if-there-is-one-newer-than-the-
FPL-source function.

1.11 Things to Consider

* The FPL Compiler is much more ’observant’ than the interpreter. Some of the
minor mistakes you’ve done in your programs and that have always worked
when interpreting your FPL programs may cause the compiler to spit. Be
aware of the fact that the interpreter never syntax check anything it
doesn’t interpret. Rubbish in between functions are never discovered.

* Typing mistakes such as spelling variable or functions names slightly
different than they’re actually named are generally *not* discovered by the
compiler, but it will merely suppose it means accessing an out-of-file
declaration of that variable/function. Use the VERBOSE command line flag
for displaying external references to trap such kind of mistakes.

* Exported/trans-file variables and functions are much slower to access than
local versions. Use local variables and functions as far as you can.

1.12 Using the Compiler

The FPL Compiler is only available from a shell prompt. [Amiga] Future
versions may be WB-runnable.

Quick n’ Easy
~~~~~~~~~~~~~
fplc <file>

More Detailed
~~~~~~~~~~~~~
Usage: FPLc [options] <file(s)>

Where available options are as follows:

COMMENTNEST - Allow nested comments in source files.

CPP <path> - Alter the name of the preprocessor program.



0764e4a0-0 6 / 7

DEBUG <flag> - Include debug info in the input. Flags available are:
LINE - source file line number info

FILES - The rest of the command line is treated as file names.

FILE - The next argument is a file name.

NOVERSION - Don’t display compiler version information.

NOCPP - Run the compiler without preprocessing the input
file(s).

OUTPUT <name> - Output name or directory. To specify a directory, end
the name with a ’/’ (or ’:’ on Amiga).

PPOPTS <opts> - Set preprocessor-specific options (passed on to the
preprocessor invoke).

VERBOSE <flag> - Produce verbose report on the compiled code.
<flag> defines which information:

PASS1 - Output from Pass1
PASS2 - Output from Pass2
PASS3 - Output from Pass3
FINAL - Final result
FULL - Full output

You may be requested to run the compiler with this
option if you have filed us a bug report!

The order of options and file names are not important.

1.13 Source / Compiling the Compiler

Included in this package (or if not, available on request from any of us
authors) is the complete source code required to build the complete compiler,
preprocessor and optimizer.

To compile it, it should be a case of selecting which makefile that suits
your needs/equipment best and run ’make -f <makefile>’. If you experience
compiling errors/warnings and fix them for a particular OS/compiler/machine, I
would very much like to get my hands on those! If you can’t fix them yourself,
ask us, we might help you if it isn’t too much and we aren’t under too heavy
work-load.

1.14 Authors of All This

FPL is mainly written by Daniel Stenberg. I started 1992 on writing the
interpreter and has since then continously updated and developed it. FPL has
been successfully compiled and run under at least 10 differen OSes, and more
are very likely to be able to run it if anyone ever wanna port it...

This compiler development would never have become reality without the
extensive help from Kjell Ericson and the work he put into the project. He



0764e4a0-0 7 / 7

wrote the "3rd stage" of the compiler and is still kind of "responsible" for
it (developing, bug fixing, etc).

Linus Nielsen helped me out on the somewhat fuzzy area of expression
optimizing. "1+A+1" actually becomes "2+A" now! ;)

Anyone out there feels like giving us a hand in this project? Just send us a
line, you don’t even have to be an Amiga developer since all FPL with compiler
is very much multi-platform.

Report all bugs you find and cannot fix yourself. Allthough we can’t promise
we’ll fix them, we just as well might do it and in order to do that we have to
know about them!

We are available at:

Daniel Stenberg
Snail Ankdammsgatan 36, S-171 43 Solna, Sweden
Email Daniel.Stenberg@sth.frontec.se
FidoNet 2:201/328
IRC Bagder in #FrexxEd/#Amiga (Efnet)

Kjell Ericson
Email kjer@netcom.se
FidoNet 2:201/328

1.15 Future of the FPL compiler

What the future of the FPL Compiler Environment will look like is very much
up to you as users of this product to decide!

If you use this and have any kind of idea of what this product should have,
do, support or what it lacks or shouldn’t do, let us know. We’re dying to get
input and feedback. Below is just a quick bunch of ideas that have passed my
mind...

The FPL Compiler Environment might get:

* Full source level debugger (breakpoints, view variables, stack trace)

* Better optimizer (peep hole, flow analyzer)

* Profiling possibilities (where does the program spend most time)

* Better way to specify external functions (’extern’ declarations)

* Better output custom format (to improve execution speed yet more)


	0764e4a0-0
	FPL Compiler Environment Documentation
	Legal Status
	About this Manual
	What is Compiling
	Compiling Phases
	Compiled Format
	Requirements
	Installation
	Limitations
	File Naming Standards
	Things to Consider
	Using the Compiler
	Source / Compiling the Compiler
	Authors of All This
	Future of the FPL compiler


